La detección temprana de tumores es extremadamente importante en el tratamiento del cáncer.
por Andy Fell, UC Davis
Davis, una nueva técnica desarrollada por investigadores de la Universidad de California, ofrece un avance significativo en el uso de imágenes de resonancia magnética para detectar incluso tumores muy pequeños del tejido normal. El trabajo se publica el 25 de mayo en la revista Nature Nanotechnology .
Las sondas químicas que producen una señal en la resonancia magnética (MRI) se pueden utilizar para identificar y obtener imágenes de tumores. La nueva investigación se basa en un fenómeno llamado ajuste de resonancia magnética que ocurre entre dos elementos magnéticos a nanoescala. Uno actúa para mejorar la señal y el otro la apaga. Estudios anteriores han demostrado que el enfriamiento depende de la distancia entre los elementos magnéticos. Esto abre nuevas posibilidades para la investigación no invasiva y sensible de una variedad de procesos biológicos mediante resonancia magnética.
El equipo de UC Davis creó una sonda que genera dos señales de resonancia magnética que se suprimen entre sí hasta que alcanzan el objetivo, en cuyo punto ambos aumentan el contraste entre el tumor y el tejido circundante. A esto lo llaman sintonización de resonancia magnética bidireccional (TMRET).
En combinación con un software de análisis de imágenes especialmente desarrollado, la señal doble permitió a los investigadores detectar tumores cerebrales en un modelo de ratón con una sensibilidad mucho mayor.
«Es un avance significativo», dijo el autor principal Yuanpei Li, profesor asociado de bioquímica y medicina molecular en la Facultad de Medicina y Centro Integral del Cáncer de la UC Davis. «Esto podría ayudar a detectar tumores muy pequeños en etapa temprana».
Dos componentes magnéticos
La sonda desarrollada por el equipo de UC Davis contiene dos componentes: nanopartículas de óxido de hierro superparamagnético (SPIO) y manganeso a-paramagnético de feoforbida (P-Mn), empaquetados en una envoltura lipídica. SPIO y P-Mn dan señales fuertes y separadas en la resonancia magnética, pero siempre que estén físicamente cerca, esas señales tienden a cancelarse entre sí o apagarse. Cuando las partículas ingresan al tejido tumoral, la envoltura grasa se descompone, SPIO y P-Mn se separan y aparecen ambas señales.
El laboratorio de Li se centra en la química de las sondas de resonancia magnética y desarrolló un método para procesar los datos y reconstruir imágenes, lo que llaman imágenes de sustracción mejorada de doble contraste o DESI. Pero por su experiencia en los mecanismos físicos, se comunicaron con los profesores Kai Liu y Nicholas Curro en el Departamento de Física de UC Davis (Liu ahora está en la Universidad de Georgetown). Los físicos ayudaron a dilucidar el mecanismo del método TMRET y refinar la técnica.
Los investigadores probaron el método en cultivos de células de cáncer de próstata y cerebro y en ratones. Para la mayoría de las sondas de resonancia magnética, la señal del tumor es hasta dos veces más fuerte que la del tejido normal: una «relación tumor / normal» de 2 o menos. Usando la nueva nanoprobe de doble contraste, Li y sus colegas podrían obtener una relación tumor-normal de hasta 10.
Li dijo que el equipo está interesado en traducir la investigación al uso clínico , aunque eso requerirá un trabajo extenso que incluye pruebas de toxicología y aumento de la producción antes de que puedan solicitar la aprobación de un nuevo fármaco en investigación.
Leer más
- Los investigadores desarrollan un modelo 3D para tratar mejor los trastornos neurológicosUn modelo 3D desarrollado por neurocientíficos de la Universidad de West Virginia muestra cómo los estimuladores implantables, del tipo que se usa para tratar el dolor crónico, pueden apuntar a… Lee más: Los investigadores desarrollan un modelo 3D para tratar mejor los trastornos neurológicos
- Los neurocientíficos utilizan la IA para simular cómo el cerebro da sentido al mundo visualUn equipo de investigación del Instituto de Neurociencias Wu Tsai de Stanford ha dado un paso importante en el uso de la IA para replicar cómo el cerebro organiza la… Lee más: Los neurocientíficos utilizan la IA para simular cómo el cerebro da sentido al mundo visual
- Los médicos atraen al público aportando un lado humano a las redes socialesHace unos años, los médicos inundaron las redes sociales con fotos de ellos mismos en trajes de baño, junto con el hashtag #medbikini . ¿La razón? Un estudio publicado recientemente sugirió que era «poco… Lee más: Los médicos atraen al público aportando un lado humano a las redes sociales
- Desarrollan productos con valor nutricional a partir de residuos de la industria alimentariaEspecialistas del CONICET trabajan en la generación de alimentos de consumo humano de manera sustentable CONICET/DICYT El equipo del CONICET liderado por la investigadora Patricia Risso y el investigador Darío Spelzini… Lee más: Desarrollan productos con valor nutricional a partir de residuos de la industria alimentaria
- Nueva herramienta para la medicina de precisión en enfermedades cardiovascularesInvestigadores de la Universidad de Uppsala han desarrollado una herramienta que permite medir simultáneamente 21 biomarcadores de enfermedades cardiovasculares con gran precisión mediante un sencillo análisis de sangre. por el Consejo… Lee más: Nueva herramienta para la medicina de precisión en enfermedades cardiovasculares
- Un bioapósito acelera la recuperación de lesiones cutáneas en diabéticosEn pruebas con ratones, investigadores de la Universidad de São Paulo observaron que este apósito inteligente modula la respuesta inmunitaria y estimula la síntesis del colágeno y la reparación de… Lee más: Un bioapósito acelera la recuperación de lesiones cutáneas en diabéticos